41 research outputs found

    On the integration of conceptual hierarchies with deep learning for explainable open-domain question answering

    Get PDF
    Question Answering, with its potential to make human-computer interactions more intuitive, has had a revival in recent years with the influx of deep learning methods into natural language processing and the simultaneous adoption of personal assistants such as Siri, Google Now, and Alexa. Unfortunately, Question Classification, an essential element of question answering, which classifies questions based on the class of the expected answer had been overlooked. Although the task of question classification was explicitly developed for use in question answering systems, the more advanced task of question classification, which classifies questions into between fifty and a hundred question classes, had developed into independent tasks with no application in question answering. The work presented in this thesis bridges this gap by making use of fine-grained question classification for answer selection, arguably the most challenging subtask of question answering, and hence the defacto standard of measure of its performance on question answering. The use of question classification in a downstream task required significant improvement to question classification, which was achieved in this work by integrating linguistic information and deep learning through what we call Types, a novel method of representing Concepts. Our work on a purely rule-based system for fine-grained Question Classification using Types achieved an accuracy of 97.2%, close to a 6 point improvement over the previous state of the art and has remained state of the art in question classification for over two years. The integration of these question classes and a deep learning model for Answer Selection resulted in MRR and MAP scores which outperform the current state of the art by between 3 and 5 points on both versions of a standard test set

    k-Means

    Get PDF

    High Accuracy Rule-based Question Classification using Question Syntax and Semantics

    Get PDF

    Flesch or Fumble? Evaluating Readability Standard Alignment of Instruction-Tuned Language Models

    Full text link
    Readability metrics and standards such as Flesch Kincaid Grade Level (FKGL) and the Common European Framework of Reference for Languages (CEFR) exist to guide teachers and educators to properly assess the complexity of educational materials before administering them for classroom use. In this study, we select a diverse set of open and closed-source instruction-tuned language models and investigate their performances in writing story completions and simplifying narrativesβˆ’-tasks that teachers performβˆ’-using standard-guided prompts controlling text readability. Our extensive findings provide empirical proof of how globally recognized models like ChatGPT may be considered less effective and may require more refined prompts for these generative tasks compared to other open-sourced models such as BLOOMZ and FlanT5βˆ’-which have shown promising results

    High Accuracy Rule-based Question Classification using Question Syntax and Semantics

    Get PDF

    Construction Grammar and Language Models

    Get PDF
    Recent progress in deep learning and natural language processing has given rise to powerful models that are primarily trained on a cloze-like task and show some evidence of having access to substantial linguistic information, including some constructional knowledge. This groundbreaking discovery presents an exciting opportunity for a synergistic relationship between computational methods and Construction Grammar research. In this chapter, we explore three distinct approaches to the interplay between computational methods and Construction Grammar: (i) computational methods for text analysis, (ii) computational Construction Grammar, and (iii) deep learning models, with a particular focus on language models. We touch upon the first two approaches as a contextual foundation for the use of computational methods before providing an accessible, yet comprehensive overview of deep learning models, which also addresses reservations construction grammarians may have. Additionally, we delve into experiments that explore the emergence of constructionally relevant information within these models while also examining the aspects of Construction Grammar that may pose challenges for these models. This chapter aims to foster collaboration between researchers in the fields of natural language processing and Construction Grammar. By doing so, we hope to pave the way for new insights and advancements in both these fields
    corecore